首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3241篇
  免费   460篇
  国内免费   479篇
化学   1512篇
晶体学   10篇
力学   79篇
综合类   3篇
数学   1410篇
物理学   1166篇
  2024年   3篇
  2023年   102篇
  2022年   107篇
  2021年   157篇
  2020年   162篇
  2019年   118篇
  2018年   106篇
  2017年   136篇
  2016年   135篇
  2015年   139篇
  2014年   228篇
  2013年   232篇
  2012年   274篇
  2011年   275篇
  2010年   233篇
  2009年   276篇
  2008年   200篇
  2007年   253篇
  2006年   209篇
  2005年   130篇
  2004年   131篇
  2003年   87篇
  2002年   100篇
  2001年   89篇
  2000年   48篇
  1999年   70篇
  1998年   59篇
  1997年   41篇
  1996年   16篇
  1995年   20篇
  1994年   13篇
  1993年   6篇
  1992年   6篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1976年   1篇
排序方式: 共有4180条查询结果,搜索用时 15 毫秒
41.
《中国化学快报》2023,34(8):108090
Electrochemical oxidation of aqueous tris(1,3-dichloro-2-propyl) phosphate (TDCPP) by using Ti/SnO2-Sb/La-PbO2 as anode was investigated for the first time, and the degradation mechanisms and toxicity changes of the degradation intermediates were further determined. Results suggested that electrochemical degradation of TDCPP followed pseudo-first-order kinetics, and the reaction rate constant (k) was 0.0332 min−1 at the applied current density of 10 mA/cm2 and Na2SO4 concentration of 10 mmol/L. There was better TDCPP degradation performance at higher current density. Free hydroxy radical (OH) was proved to play dominant role in TDCPP oxidation via quenching experiment, with a relative contribution rate of 60.1%. A total of five intermediates (M1, C6H11Cl4O4P; M2, C3H7Cl2O4P; M3, C9H16Cl5O5P; M4, C9H14Cl5O6P; M5, C6H10Cl3O6P) were identified, and the intermediates were further degraded prolonging with the reaction time. Flow cytometer results suggested that the toxicity of TDCPP and degradation intermediates significantly reduced, and the detoxification efficiency was achieved at 78.1% at 180 min. ECOSAR predictive model was used to assess the relative toxicity of TDCPP and the degradation intermediates. The EC50 to green algae was 3.59 mg/L for TDCPP, and the values raised to 84, 574, 54.6, 391, and 8920 mg/L for M1, M2, M3, M4, and M5, respectively, indicating that the degradation intermediates are less toxic or not toxic. Electrochemical advanced oxidation process is a valid technology to degrade TDCPP and pose a good detoxification effect.  相似文献   
42.
《中国化学快报》2023,34(7):107787
Metal-organic frameworks (MOFs) as promising electrodes for supercapacitors are attracting increasing research interest. Herein, we report an effective strategy to improve the electrochemical performance of Ni-MOF for supercapacitor by introducing a secondary Co ion. The Co substitution of Ni in Ni-MOF can improve the intrinsic reactivity and stability. As a result, the bimetallic Co/Ni-MOF-1:15 with an optimal Co/Ni ratio delivers high specific capacitance (359 F/g at 0.5 A/g), good rate performance (81.5% retention at 5 A/g) and cycling stability (81% retention after 5000 cycles). These results demonstrate that the bimetallic synergistic strategy is an effective way to improve the pseudocapacitive performance of MOFs.  相似文献   
43.
《中国化学快报》2023,34(12):108453
A cooperative Pd/Cu-catalyzed three-component cross-coupling reaction of alkynes, B2Pin2 and alkene-tethered aryl halides is reported. This reaction proceeds under mild conditions and shows broad substrate scope, providing a variety of heterocycles containing tetrasubstituted alkenylboronate moieties in synthetically useful yields with excellent chemoselectivity and regioselectivity. This transformation features the catalytic generation of β-borylalkenylcopper intermediates and their use in Pd-catalyzed Heck cyclization/cross-couplings. An enantioselective cascade cyclization/cross-coupling process has also been developed for the synthesis of enantiomerically enriched oxindole bearing a tetrasubstituted alkenylboronate moiety.  相似文献   
44.
We propose the pseudobrookite Fe2TiO5 nanofiber with abundant oxygen vacancies as a new electrocatalyst to ambiently reduce nitrate to ammonia. Such catalyst achieves a large NH3 yield of 0.73 mmol h−1 mg−1cat. and a high Faradaic Efficiency (FE) of 87.6 % in phosphate buffer saline solution with 0.1 M NaNO3, which is lifted to 1.36 mmol h−1 mg−1cat. and 96.06 % at −0.9 V vs. RHE for nitrite conversion to ammonia in 0.1 M NaNO2. It also shows excellent electrochemical durability and structural stability. Theoretical calculation reveals the enhanced conductivity of this catalyst and an extremely low free energy of −0.28 eV for nitrate adsorption at the presence of vacant oxygen.  相似文献   
45.
The rational design of advanced nanohybrids (NHs) with optimized interface electronic environment and rapid reaction kinetics is pivotal to electrocatalytic schedule. Herein, we developed a multiple heterogeneous Co9S8/Co3S4/Cu2S nanoparticle in which Co3S4 germinates between Co9S8 and Cu2S. Using high-angle annular-dark-field imaging and theoretical calculation, it was found that the integration of Co9S8 and Cu2S tends to trigger the interface phase transition of Co9S8, leading to Co3S4 interlayer due to the low formation energy of Co3S4/Cu2S (−7.61 eV) than Co9S8/Cu2S (−5.86 eV). Such phase transition not only lowers the energy barrier of oxygen evolution reaction (OER, from 0.335 eV to 0.297 eV), but also increases charge carrier density (from 7.76×1014 to 2.09×1015 cm−3), and creates more active sites. Compared to Co9S8 and Cu2S, the Co9S8/Co3S4/Cu2S NHs also demonstrate notable photothermal effect that can heat the catalyst locally, offset the endothermic enthalpy change of OER, and promote carrier migrate, reaction intermediates adsorption/deprotonation to improve reaction kinetics. Profiting from these favorable factors, the Co9S8/Co3S4/Cu2S catalyst only requires an OER overpotential of 181 mV and overall water splitting cell voltage of 1.43 V to driven 10 mA cm−2 under the irradiation of near-infrared light, outperforming those without light irradiation and many reported Co-based catalysts.  相似文献   
46.
Nafion covered core–shell structured Fe3O4@graphene nanospheres (GNs) modified glassy carbon electrode (GCE) was successfully prepared and used for selective detection dopamine. Firstly, the characterizations of hydro-thermal synthesized Fe3O4@GNs were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Then Fe3O4@GNs/Nafion modified electrode exhibited excellent electrocatalytic activity toward the oxidations of dopamine (DA). The interference test showed that the coexisted ascorbic acid (AA) and uric acid (UA) had no electrochemical interference toward DA. Under the optimum conditions, the broad linear relationship was obtained in the experimental concentration from 0.020 μM to 130.0 μM with the detection limit (S/N = 3) of 0.007 μM. Furthermore, the core–shell structured Fe3O4@GNs/Nafion/GCE was applied to the determination of DA in real samples and satisfactory results were got, which could provide a promising platform to develop excellent biosensor for detecting DA.  相似文献   
47.
48.
Graphene shells with a controllable number of layers were directly synthesized on Cu nanoparticles (CuNPs) by chemical vapor deposition (CVD) to fabricate a graphene‐encapsulated CuNPs (G/CuNPs) hybrid system for surface‐enhanced Raman scattering (SERS). The enhanced Raman spectra of adenosine and rhodamine 6G (R6G) showed that the G/CuNPs hybrid system can strongly suppress background fluorescence and increase signal‐to‐noise ratio. In four different types of SERS systems, the G/CuNPs hybrid system exhibits more efficient SERS than a transferred graphene/CuNPs hybrid system and pure CuNPs and graphene substrates. The minimum detectable concentrations of adenosine and R6G by the G/CuNPs hybrid system can be as low as 10?8 and 10?10 M , respectively. The excellent linear relationship between Raman intensity and analyte concentration can be used for molecular detection. The graphene shell can also effectively prevent surface oxidation of Cu nanoparticles after exposure to ambient air and thus endow the hybrid system with a long lifetime. This work provides a basis for the fabrication of novel SERS substrates.  相似文献   
49.
50.
Herein,we propose a novel photoelectrochemical(PEC) biosensor for dual microRNAs(miRNAs) highly sensitive and simultaneous biosensing based on strand displaced amplification(SDA) reaction.The recognition of H_(miR-21) and H_(let-7 a) by microRNA-21 and let-7 a leads to their change in hairpin structures,subsequently initiating the immobilization of abundant CdS quantum dots(CdS QD s) and methylene blue(MB) based on SDA reaction.The immobilized CdS QDs and MB produce both high PEC currents under430 nm light and 627 nm light illumination,respectively,and the generated PEC currents are closely relied on target miRNAs amounts.Thus,highly sensitive and simultaneous detection of microRNA-21 and let-7 a was readily achieved with detection limit at 6.6 fmol/L and 15.4 fmol/L based on 3σ,respectively.Further,this PEC biosensor was applied in simultaneous analysis of miRNA-21 and let-7 a in breast cancer patient's serum with acceptable results.We expect this biosensor will find more useful application in diagnosis of miRNA-related diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号